PUBLICACIONES

Forecasting gold price changes: Rolling and recursive neural network models

J. Internacional: Forecasting gold price changes: Rolling and recursive neural network models

DAVID DÍAZ S., ANTONINO PARISI F., FRANCO PARISI F.

2008 - Journal of Multinational Financial Management - Vol. 18, N° 5, Pp 477-487

Abstract

This paper analyzes recursive and rolling neural network models to forecast one-step-ahead sign variations in gold price. Different combinations of techniques and sample sizes are studied for feed forward and ward neural networks. The results shows the rolling ward networks exceed the recursive ward networks and feed forward networks in forecasting gold price sign variation. The results support the use of neural networks with a dynamic framework to forecast the gold price sign variations, recalculating the weights of the network on a period-by-period basis, through a rolling process. Our results are validated using the block bootstrap methodology with an average sign prediction of 60.68% with a standard deviation of 2.82% for the rolling ward net.

Keywords

Recursive operation; Rolling operation; Artificial neural networks

¿Quieres seguir leyendo? [Accede a la publicación completa]

Profesor David Díaz converso en CNN Internacional sobre "Data Transfer Proyect"

El Data Transfer Project, ¿quién será dueño de la información?   Las gigantes tecnológicas lanzan un nuevo plan para permitir a sus usuarios t...

DataDriven: la forma en la que el marketing busca cuidar mejor al cliente y sus datos

Tendencia que mezcla tecnología y creatividad Aunque muchas veces se ha pensado que el producto es clave para definir estrategias de negocios u organizaciones, en los últimos a&nt...

Todos los Derechos © 2014 | Departamento de Administración - Facultad de Economía y Negocios - Universidad de Chile - Diagonal Paraguay 257, torre 26, oficina 1101, piso 11, Santiago, Chile.