PUBLICACIONES

Forecasting gold price changes: Rolling and recursive neural network models

J. Internacional: Forecasting gold price changes: Rolling and recursive neural network models

ANTONINO PARISI F., FRANCO PARISI F., DAVID DÍAZ S.

2008 - Journal of Multinational Financial Management - Vol. 18, N° 5, Pp 477-487

Abstract

This paper analyzes recursive and rolling neural network models to forecast one-step-ahead sign variations in gold price. Different combinations of techniques and sample sizes are studied for feed forward and ward neural networks. The results shows the rolling ward networks exceed the recursive ward networks and feed forward networks in forecasting gold price sign variation. The results support the use of neural networks with a dynamic framework to forecast the gold price sign variations, recalculating the weights of the network on a period-by-period basis, through a rolling process. Our results are validated using the block bootstrap methodology with an average sign prediction of 60.68% with a standard deviation of 2.82% for the rolling ward net.

Keywords

Recursive operation; Rolling operation; Artificial neural networks

¿Quieres seguir leyendo? [Accede a la publicación completa]

Profesor Pedro Leiva expuso en el Seminario SUSESO-ISTAS 21

El pasado 19 de abril, el Director del Observatorio de Gestión de Personas de la Facultad de Economía y Negocios de la Universidad de Chile, Profesor Pedro Leiva participó como...

Profesora Soledad Etchebarne participo en Seminario de Educación Financiera en Jóvenes Chilenos: Evidencia y Desafíos.

El pasado 14 de marzo de 2018, se llevo a cabo en el auditorio del Banco Central el Seminario de “Educación Financiera en Jóvenes Chilenos: Evidencia y Desafíos”. E...

Todos los Derechos © 2014 | Departamento de Administración - Facultad de Economía y Negocios - Universidad de Chile - Diagonal Paraguay 257, torre 26, oficina 1101, piso 11, Santiago, Chile.