PUBLICACIONES

Forecasting gold price changes: Rolling and recursive neural network models

J. Internacional: Forecasting gold price changes: Rolling and recursive neural network models

DAVID DÍAZ S., ANTONINO PARISI F., FRANCO PARISI F.

2008 - Journal of Multinational Financial Management - Vol. 18, N° 5, Pp 477-487

Abstract

This paper analyzes recursive and rolling neural network models to forecast one-step-ahead sign variations in gold price. Different combinations of techniques and sample sizes are studied for feed forward and ward neural networks. The results shows the rolling ward networks exceed the recursive ward networks and feed forward networks in forecasting gold price sign variation. The results support the use of neural networks with a dynamic framework to forecast the gold price sign variations, recalculating the weights of the network on a period-by-period basis, through a rolling process. Our results are validated using the block bootstrap methodology with an average sign prediction of 60.68% with a standard deviation of 2.82% for the rolling ward net.

Keywords

Recursive operation; Rolling operation; Artificial neural networks

¿Quieres seguir leyendo? [Accede a la publicación completa]

Sales Summit 2017 - Unegocios FEN UChile

El Centro de Desarrollo Gerencial (Unegocios) del Departamento de Administración la Facultad de Economía y Negocios de la Universidad de Chile realizará el 1er Seminario e...

Ingeniería Comercial de FEN lidera ranking de AméricaEconomía 2017

• La Universidad de Chile se posicionó como la mejor universidad del país según el ranking 2017 de la revista América Economía.  • En el subran...

Todos los Derechos © 2014 | Departamento de Administración - Facultad de Economía y Negocios - Universidad de Chile - Diagonal Paraguay 257, torre 26, oficina 1101, piso 11, Santiago, Chile.