PUBLICACIONES

Forecasting gold price changes: Rolling and recursive neural network models

J. Internacional: Forecasting gold price changes: Rolling and recursive neural network models

ANTONINO PARISI F., FRANCO PARISI F., DAVID DÍAZ S.

2008 - Journal of Multinational Financial Management - Vol. 18, N° 5, Pp 477-487

Abstract

This paper analyzes recursive and rolling neural network models to forecast one-step-ahead sign variations in gold price. Different combinations of techniques and sample sizes are studied for feed forward and ward neural networks. The results shows the rolling ward networks exceed the recursive ward networks and feed forward networks in forecasting gold price sign variation. The results support the use of neural networks with a dynamic framework to forecast the gold price sign variations, recalculating the weights of the network on a period-by-period basis, through a rolling process. Our results are validated using the block bootstrap methodology with an average sign prediction of 60.68% with a standard deviation of 2.82% for the rolling ward net.

Keywords

Recursive operation; Rolling operation; Artificial neural networks

¿Quieres seguir leyendo? [Accede a la publicación completa]

El no utilizar estándares de sostenibilidad significa que algo estamos dejando de hacer

La crisis surgida en Quintero y Puchuncaví deja abiertas varias interrogantes que por ahora parecen estar lejos de resolverse, pues más allá de los episodios concretos que se v...

La Universidad de Chile propone mejorar los sesgos generados hacia las mujeres en el mundo laboral

Es necesario fortalecer y transferir herramientas conceptuales sobre el impacto que generan las diferencias de género en el trabajo. El pasado 09 de Agosto. El Observatorio de Gest...

Todos los Derechos © 2014 | Departamento de Administración - Facultad de Economía y Negocios - Universidad de Chile - Diagonal Paraguay 257, torre 26, oficina 1101, piso 11, Santiago, Chile.