PUBLICACIONES

A Random Walk through the Trees: Forecasting Copper Prices using Decision Learning Methods

ISI: A Random Walk through the Trees: Forecasting Copper Prices using Decision Learning Methods

J. DIAZ R., ERWIN HANSEN S., GABRIEL CABRERA.

2020 - Forthcoming - Resources Policy - Volume 69, December 2020, 101859

Abstract

We investigate the accuracy of copper price forecasts produced by three decision learning methods. Prior evidence (Liu et al., Resources Policy, 2017) shows that a regression tree, a simple decision learning model, can be used to predict copper prices for both short-term and long-term horizons (several days and several years, respectively). We contribute to this literature by evaluating more sophisticated decision learning methods based on trees: random forests and gradient boosting regression trees. Our results indicate that random forests and gradient boosting regression trees significantly outperform regression trees at forecasting copper prices. Our analysis also reveals that a random walk process, recognized in the literature as one of the most useful models for forecasting copper prices, yields competitive out-of-sample forecasts as compared to these decision learning methods.

Keywords

Copper priceForecastingDecision learning methodsTree-based methodsRandom walk

¿Quieres seguir leyendo? [Accede a la publicación completa]

Conversatorio Virtual en SERNAC - Oportunidades Pro Consumidor, en tiempos de Pandemia

El día 9 de Septiembre, 2020 la profesora Reinalina Chavarri, Directora del Observatorio de Sostenibilidad, fue invitada a exponer en la actividad organizada por SERNAC sobre Oportunidades P...

Corrupción en Startups. Lecciones para el Ecosistema de Innovación Chileno

Cuando hablamos de empresas startups la mayoría de los casos pensamos en jóvenes idealistas, expertos en alguna tecnología, impulsados por desarrollar nuevos productos y servic...

Todos los Derechos © 2014 | Departamento de Administración - Facultad de Economía y Negocios - Universidad de Chile - Diagonal Paraguay 257, torre 26, oficina 1101, piso 11, Santiago, Chile.